Overcoming PLM challenges to the Licensee business

Mr. Bjarne Rosford Nørgaard Head of Engineering Process Development MAN Diesel & Turbo.

14K98ME-C – worlds most powerful engine in order:

Bore:	980	mm
RPM:	104	r/min
Fuel:	346	ton/day
Height:	14,6	m

Stroke: Weight: Length:

2.660 mm Power: 84.280 kW 2.219 ton 29 m

Data

Worlds Largest Container Ship Majestic Mærsk

Worlds Largest Container Ship Majestic Mærsk

Worlds Largest Container Ship Majestic Mærsk

Overcoming PLM challenges to the Licensee business

Agenda

How to build a ship in 4 steps

Servicing 25.000 engines over 30 years/ "A regular day in the office"

How we will handle the challenges

The Funnel

 \bigcirc

The Extension

How to build a ship in 4 steps

... from the perspective of an engine

STEP 1: Engine Design

STEP 2: Engine building

Licensee

Plan production, produce parts, assemble and tests the engine.

Build the (rest of the) ship around the engine

STEP 4: Ship in operation

When in sea start the engines! Perform Sea trial test.

Handover to shipowner.

Engine Qualities

- Long duration: minimum 30 years, operational 24/7/365.
- Reliable: Minimal service breaks

Lifecycle of an engine

A regular day in the office

Example case 1: MS Blue Oyster

Example case 2: Problem with designed part

Funnel

#1: Consolidate and share data

•

More benefits

Supply chain forecasting

Impact Analysis

Identification of potential retrofit customers

Support for fact based decisions

Example case 3: System islands

Pipeline

#2: Interconnected systems

- Better synchronisation
- More efficient exchange of data
- Systems support "We working as one unit"

Our PLM system

Hope: Agile system landscape, which we can gradually build

Our Challenge

Potential

Our vision is that in 2017 our business unit will have customers, employees, processes and systems working together as efficient as a Diesel engine.

We will achieve this by:

We will implement this stepwise over time....

Thank you, Questions?

Bjarne Rosford Nørgaard Engineering Proces Development MAN Diesel & Turbo, bjarne.noergaard@man.eu Marine Low Speed < 27 >

Disclaimer

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.