

Insitu's PLM Journey (so far)

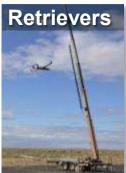
When Life Hands You Lemons, Make Flavored Lemonade

Insitu, Inc. (a Boeing Company)

Company Overview

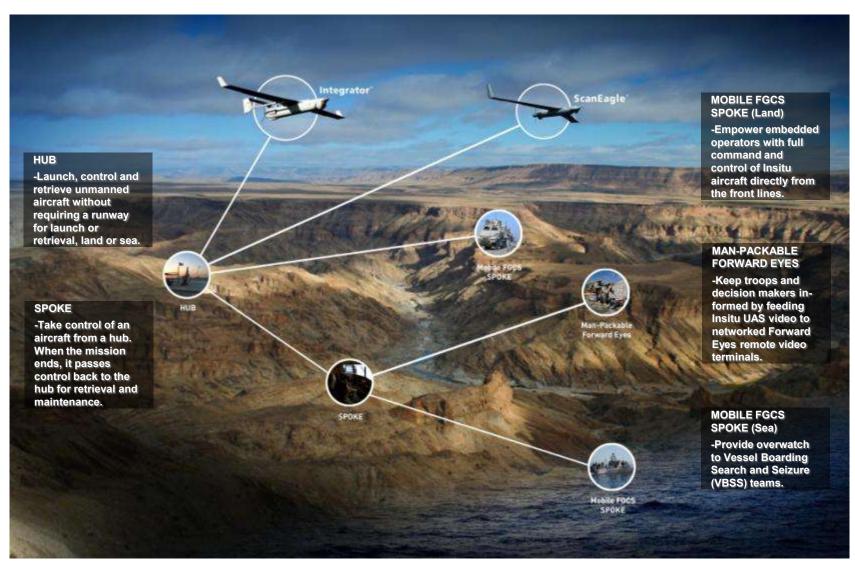
Insitu Snapshot

- Leading provider of Small Long-Endurance
 Unmanned Aircraft Systems (UAS) and Services
 - Developer of ScanEagle System
 - Over 590,000 Combat Flight Hours
- Major Customers:
 - U.S. Marine Corps
 - U.S. Navy
 - U.S. Army
 - Special Operations Forces (SOF)
 - Australian Defense Force
 - Canadian Defense Forces
 - USAF, DoD Customers
- Strong Track Record of Historical Growth
- 800+ Highly Qualified Employees
- Proprietary IP and technology partnerships
- Location: Columbia Gorge (near Portland, OR)

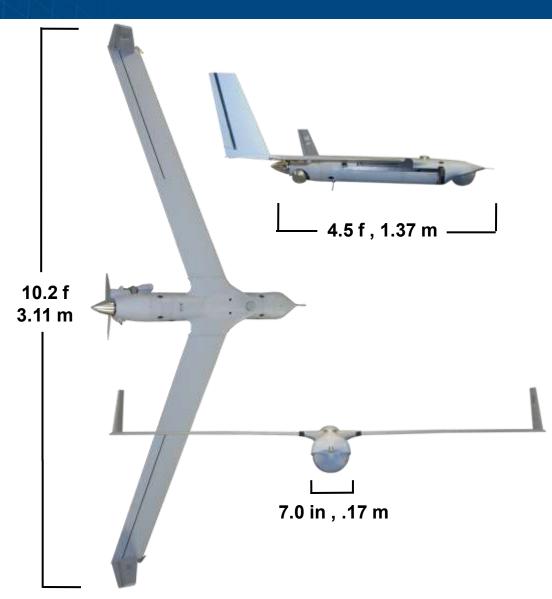


Products & Services

Product Lines


Services

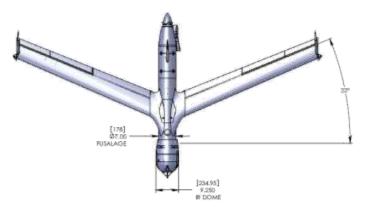
Hub & Spoke

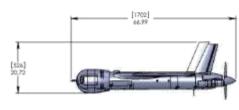


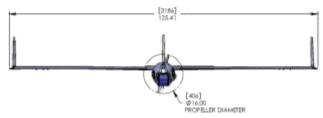
ScanEagle

QUICK SPECS						
GTOW	44.0 lbs					
Fuel + Payload	12.4 lbs					
Max level speed	82 kts					
Cruise speed	55 kts					
Ceiling	20,000 ft					
Endurance	24+ hours					
Total Operational Hours	590,000+					
Shipboard Sorties	2,800+					

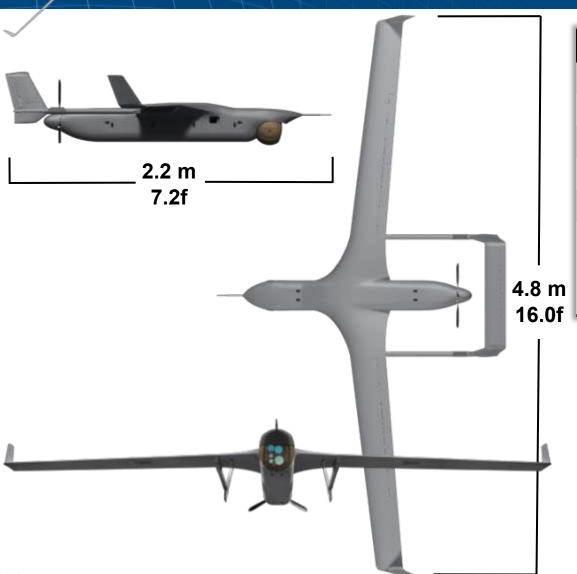
- 90% solution / 3% cost
- Heavy Fuel Option, JP-5, JP-8 or Jet-A
- Mode 3C Transponder
- Automated Launch / Retrieval
- Fully Autonomous
- Small physical and personnel footprint
- Wide weather envelope



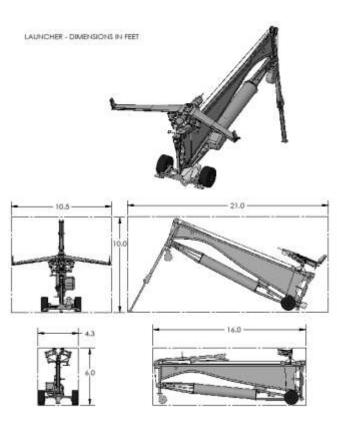



NightEagle

QUICK SPECS								
Optical Zoom Steps 2.5°(4x) - 10°(1x) FOV								
Added Digital Zoom Steps	1x - 4x							
Full Range of Zoom Steps (Optical & Digital)	1x -16x							
Articulation	+75 to -45 (120°)							

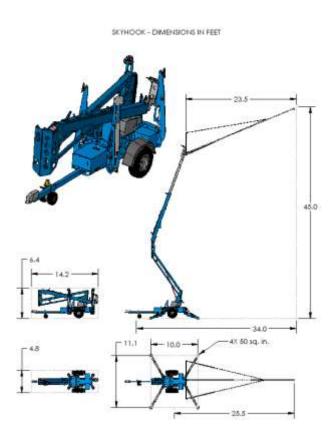


Integrator



QUICK SPECS						
Cruise Spe	ed	55 knots				
Dash Spee	ed	80+ knots				
Service Ceiling		>15,000 ft / 4572M				
Empty Weight		75 lbs / 34.0kg				
Max Takeoff Weight		135 lbs / 61.2 kg				
Payload	37.5 lbs/1	kg & 250W / 15hrs I7kg max. payload ax. payload power				

- System interoperability with ScanEagle
- Drastic payload envelope increase over ScanEagle
- iPhone[™] like integration platform


Launcher / Skyhook

| Insitu is a Boeing Company. | All rights reserved. |

ScanEagle Operator Workstation

Aircraft Health

- Telemetry Data
- Digital Checklists and Emergency Procedures

Aircraft Operation

- Topographical map view
- Drag and Drop navigation
- Waypoint set up

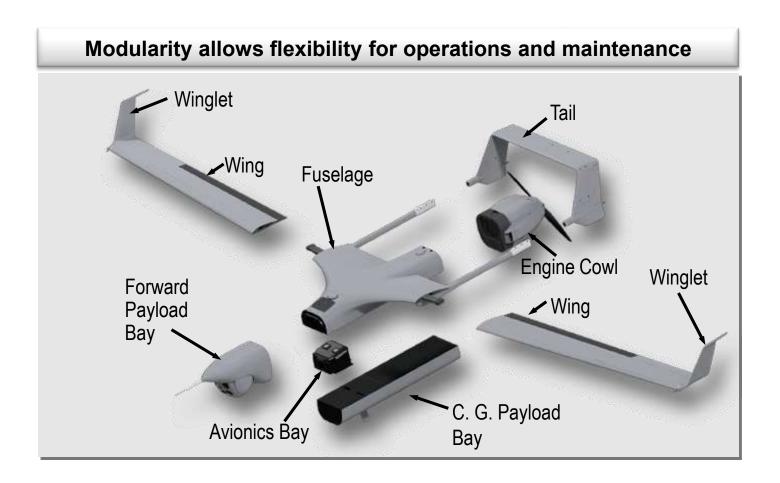
Camera

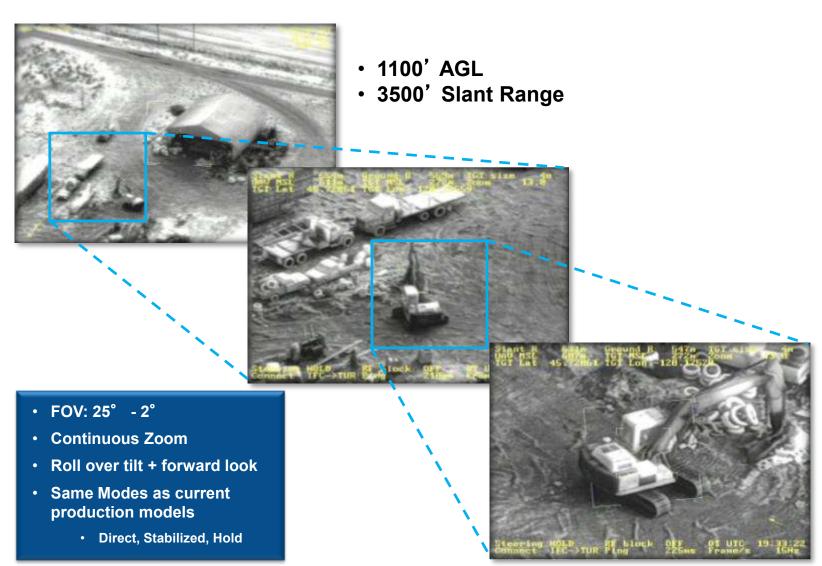
- Imagery
- Operation
- Manipulation

Single Person Aircraft Operation / Video Manipulation

Insitu Services Overview

Basic Maritime Installation


- 32+ Completed Ship Installations
- 2,800+ Sorties
- 24/7 Ops
- Surveillance range over 100 200 km
- Offers complete integration
- Installation does not 'foul' or interfere with flight deck operations



Aircraft Modularity

NightEagle

The Way We Were

Why PLM?

- Examples of Insitu-produced controlled documents:
 - Specifications, drawings, technical data packages
 - Product release files and change records
 - Policies, processes and procedures
 - Training manuals, maintenance manuals and schedules
- Multiple disconnected product data libraries:
 - PDMWorks (MCAD models, drawings, some part/document state information)
 - Shared drives (specifications, drawings, ECAD, change records, ...)
 - ERP system (product information to the "Buy" level only, no design-level data, no documents)

Why PLM? (cont)

- Major issues:
 - Manual change process, revisioning and status accounting very labor intensive
 - Manual syncing of part property information amongst systems usually one system was never correct
 - Disconnected data no way to perform an impact analysis
 - Data access most Engineers did not have an ERP account, most
 Manufacturing personnel did not have a PDMWorks account
- Rapid company growth and addition of new products required a more sophisticated documentation library and process

Goals

- Create efficiency in the storing and retrieval of Insitu product documents
- Provide a central definition of product configurations and a repository for their associated documents
- Alleviate rework and disorder with regard to document storage and version control
- Consolidate numerous legacy systems into a common system
- Ensure the speedy retrieval of the current document version
- Improve availability of product data across the extended enterprise
- Provide the ability to link data and documents, which will make possible and/or improve the retrieval of relevant data
- Allow Insitu employees and suitable vendors to access current and appropriate documents or sets of documents in an efficient manner

Strategy

- PDM will be the first step in Insitu's PLM solution
- Dedicate a team to the project
- Evaluate Insitu's PLM needs and select a supplier/partner to meet those needs
- Recognize that processes, and therefore requirements, will change as we implement

Requirements Gathering and Solution Selection

Jun - Dec 2009

PDM Map Day

Gathered Requirements, Enhancements, Business Rules, Risks

▼	PDM Requirements 1. PDM Map Day 2. Other Sources	REQUIREMENT	ENHANCEMENT	BUSINESS RULE	RISK	USE CASE	PDM Project
	USE CASE: Delete / retire part number					Υ	Q: retire the Part or the Part Number? Catherine 6/26
, i	Automatic CID: generation - fill out all the necessary fields		Υ				What is intent? Default fields prefilled and auto-generated? Or required fields identified? Catherine 6/26
	On-Demand docs / user manuals / maintenance manuals / embedded objects / linked and updated	Υ					Q: what is definition of "on-demand"? Does it require a different set of requirements than those shown? Catherine 6/26
	Electronic maintenance / repair logs and links to PDM		Υ				Redundant - covered by 137 (KKH)
FR-034	Schematic of system; future and current	Υ					Q: Need schematic of system or schematic of product revisions or both? Catherine 6/26
-	Part numbers assigned to single Cl; preventing reuse	Υ					Q: What is "CI"? How does this differ from the requirement of having unique identifiers and unique part numbers? Catherine 6/26
	Phased implementation	Υ					Project Management Requirement. Catherine 6/26
vague	Data integrity check	Υ					Need more info: Does this refer to data scrubbing? Or to checking integrity of data once it is in the PDM system? Catherine 6/26
	System testing	Υ					Project Management Requirement. Catherine 6/26
	Pilot on X-230 or X-300: combining new PDM project and New product project at the same time multiplies risk				Υ		
	Training: lots of training to start more late to keep quality high				Υ		
	Linkage to Saphire as maintained BOM tail Number tracking. (?)		Υ				Q: Does this require more than what is captured in IR-009? Catherine 6/26
	Part numbers: can they be reused after- deletion, thereby causing confusion?				Υ		Redundant - covered by 131 (KKH)
	Based on User Roles in PDM, Vault access and projects.			Υ			

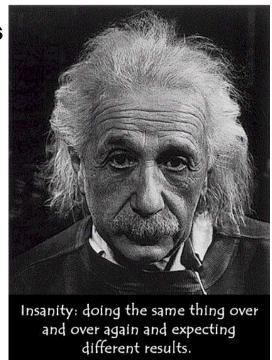
Vendor Demos

- PDM Team formalized requirements (Correlated to Map Day)
- Weighted requirements
- Evaluated demos seven systems

insitu		Р	raduct 1	Product 2	2	Product 3		
ID	Requirement	Scoring Fa	Weighting Factor 🔽	ing Factor 🔽	Score 💌	Scoring Factor	Score •	
	Functional Requirements		Voru biah importance					
FR-001	Supports standard document naming con-	rully sausiles	Very high importance	satisfies	5	Substantially satisfies	10	
FR-002	Ability to publish an index of controlled do	Fully satisfies	ingrimporance	antially satisfies	\$	Substantially satisfies	8	
FR-003	Ability to scan document repository and lin	Fully satisfies	i mediam importance	satisfies	9	Substantially satisfies	6	
FR-004	Documents can be referenced and opens	Fully satisfies	ingrimporance	satisfies	12	Does not satisfy	0	
FR-005	Support complex relationships between se	Fully satisfies	i very riigir iiriportarice	antially satisfies	10	Fully satisfies	15	
FR-006	Provide mechanism for someone other that	Substantially:	e very 1000 limportance	satisfies	3	Fully satisfies	3	
FR-007	Provide a mechanism for users to annotate	į Substantially :		antially satisfies	6	Partly satisfies	3	
FR-008	Current revision of a document must rema	Does not sats		satisfies	15	Partly satisfies	5	
FR-009	Ability to see which user has a document	Partly satisfies		antially satisfies	10	Fully satisfies	15	
FR-010	Allow users to publish a PDF rendition of		High importance	antially satisfies	\$	Does not satisfy	0	

Results

- Chose vendor short list three systems,
 one of which was Aras Innovator
- Released a Request for Proposal to PDM vendors on short list
- Requested customized vendor demos using Insitu use cases and data sets
- Completed final weighted requirements matrix and determined scores
- First choice was Aras Innovator due to its capabilities and flexibility
- Executive leadership was not comfortable with "open source software" concept
- Parent company was recommending one of the Big-Box systems
- Went with second choice, one of the Big-Box systems



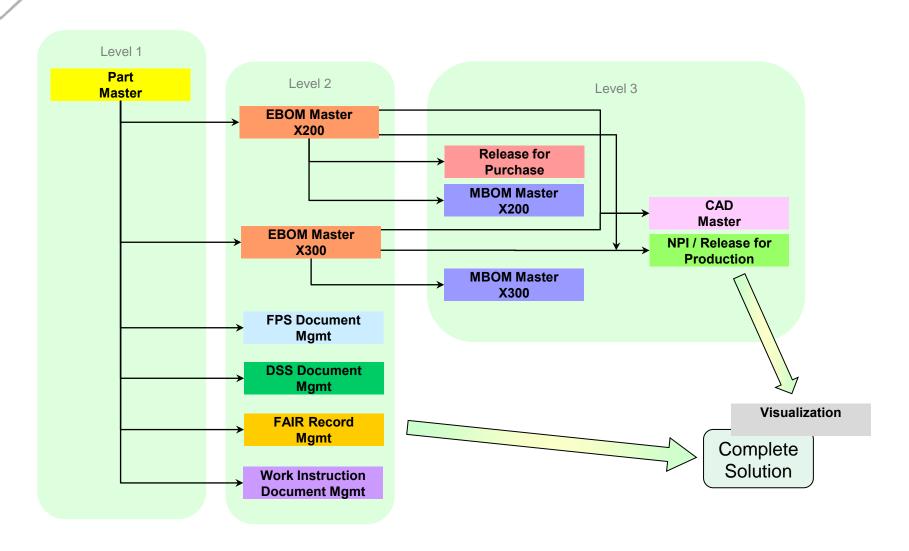
Big-Box Implementation

Big-Box Implementation

- Jan 2010: Engaged vendor team of solution experts
- Three months and three complete revisions to produce an acceptable SOW
- Trained Insitu PDM Team
- Vendor PM #1 lost to personal constraints; spin up new PM
- Vendor PM #2 relieved due to lack of progress
- Engaged third-party consulting team of process experts; spin up new team
- Three more months and little progress due to immature and changing processes
- By Nov 2010, we were almost ONE YEAR behind schedule and severely OVER BUDGET!

Reset, Please

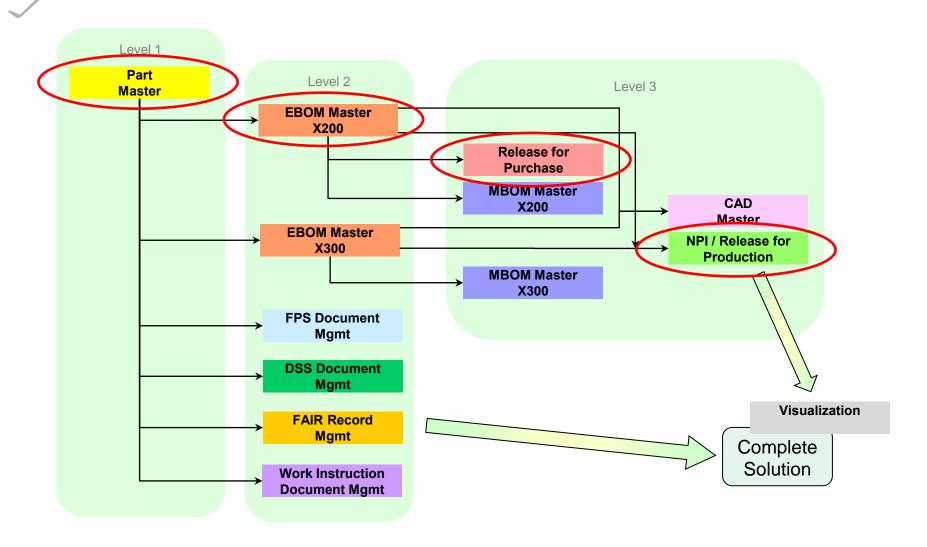
- Aras was becoming more widely accepted in industry and we better understood their subscription service
- PDM Team met with Executive leadership and requested a re-eval
- Permission granted
- Conducted Aras Discovery Workshop which resulted in a SOW documenting the phasing, steps, project plan and cost
- Aras Innovator was the clear choice
- Feb 2011: Presented findings to Executive leadership; decision was unanimous to change course and proceed with Aras Innovator


Be Different

Root Cause

- Root cause of our big-box implementation issues was that we were trying to implement a solution which requires well-defined and stable processes
- Aras Innovator was the perfect solution because it allows us to quickly and easily change the solution as our processes mature and change
- Aras Innovator also allows us to approach our PDM implementation using Agile Software Development methodologies:
 - Attack one feature/process at a time and roll it out
 - Plan at a high-level, but gather detailed requirements only for the feature at hand – everything else is likely to change
 - Real-world use is the only way to determine the real requirements;
 everything prior to that is just guessing
 - Use visual and behavioral prototypes to flush out requirements

Feature List Sequence Diagram



PDM Project Phase I

Phase I Scope

Where We Were

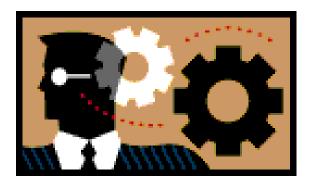
- Change in Design (CID) process issues
 - Paper form very manual, disconnected data
 - Slow and cumbersome
 - Large design change packages = bottlenecks
 - Difficult to perform impact analysis
 - Manual checks
 - Lack of visibility of change status

Yuck!

The Goal & The Challenge

The Goal

- Speed up the release process, and
- Provide for formal change control earlier in the design process


The Challenge

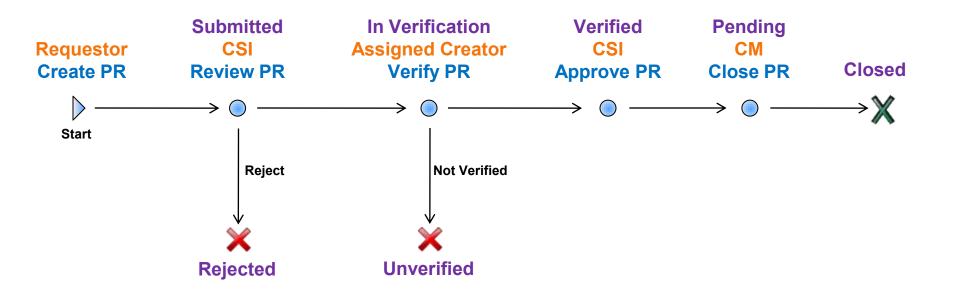
- Implement the following in Aras Innovator in 60 days:
 - Part Master
 - Engineering Bill of Materials (EBOM)
 - Problem Reporting (PR)
 - Engineering Change Request (ECR)
 - Engineering Change Notice (ECN)

Develop the Process

- Develop the Process:
 - Process development led by CMII-trained personnel
 - Assembled a multi-disciplined team, with representatives from each affected department
 - Used CMII as the process model and made tweaks from there
 - o Identified the deltas:
 - CID Process vs. CMII Process
 - CID Form vs. PR/ECR/ECN Forms
 - Defined requirements
 - Got buy-in!

Implement the Solution

- PDM Core Team comprised of Aras Innovator-trained personnel and an Aras consultant
- Learned the OOTB functionality of the Product Engineering solution, which implements the CMII change process
- Trained the primary users (CM) on OOTB functionality
- Worked in parallel with process development required tight collaboration with the process team
- Configured/customized as necessary 140 item changes
- Migrated the data 13,000 parts cleansed, formatted, migrated and validated
- UAT, UAT and more UAT

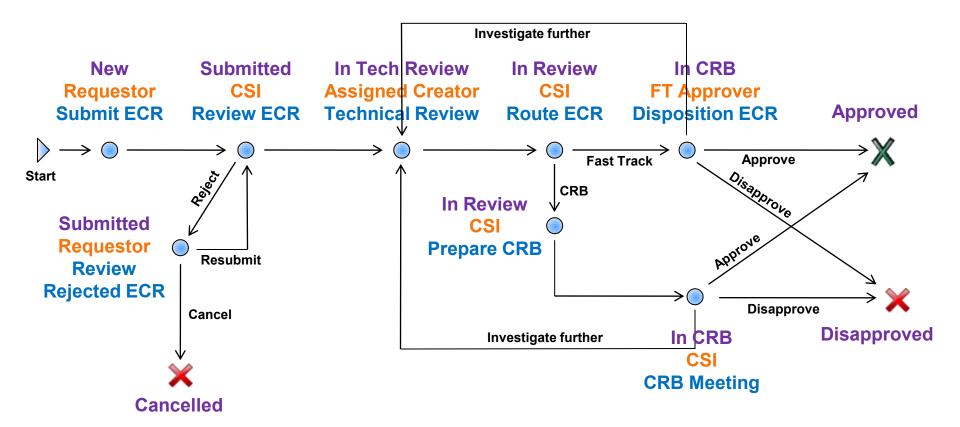


Problem Report (PR) Workflow

Legend: PR state

Responsible Party

Activity

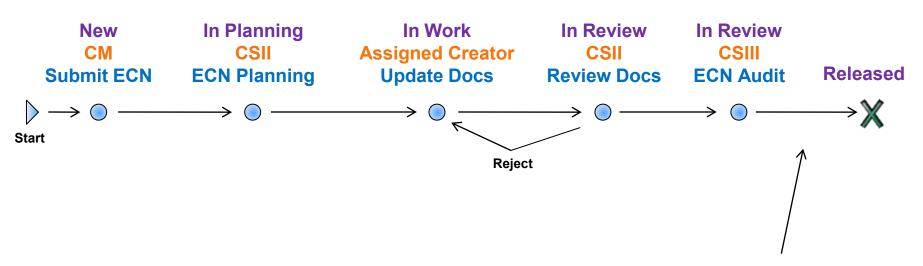


Engineering Change Request (ECR) Workflow

Legend: **ECR state**

Responsible Party

Activity



Engineering Change Notice (ECN) Workflow

Legend: **ECN state**

Responsible Party

Activity

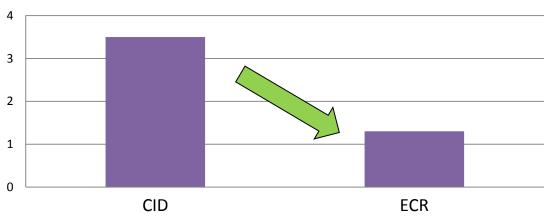
Aras Innovator promotes New items to Released state

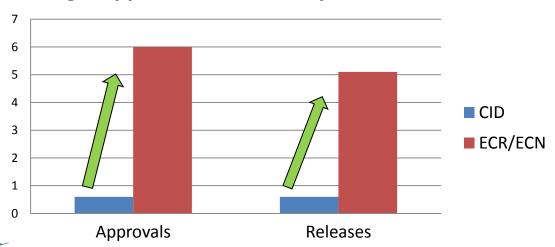
Aras Innovator promotes Old items to Superseded state

Train and Roll Out

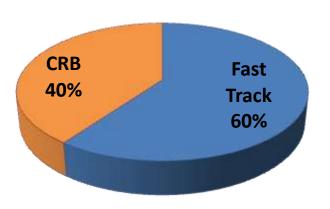
- Developed training materials
 - Part I General tool usage
 - Logging on, general navigation, searching, features, logging off
 - Part II Process
 - Parts, EBOMs, PR, ECR and ECN
- Hands-on training with user exercises
- 160 users trained
- Rollout was a success and scarily quiet!
- Continue to release updates as necessary
 - First update occurred two weeks after rollout
 - Second update was four weeks after that

Achievements


- Early release of long-lead items
- Release from the bottom up vs. all at once
- Where-used visibility and ability to perform impact analysis
- Fast-track release vs. a required meeting
- Formal release and control of the design at point of purchase vs. at release for production
- Searchable and linked information
- Ability to easily build upon the base system put in place



Metrics – The Proof!


Avg # Days/Part from Submittal to Approval

Avg # Approvals & Releases per Week

Fast Track vs. CRB

CMII Standard: 75-85% of changes should be Fast Track (FT)

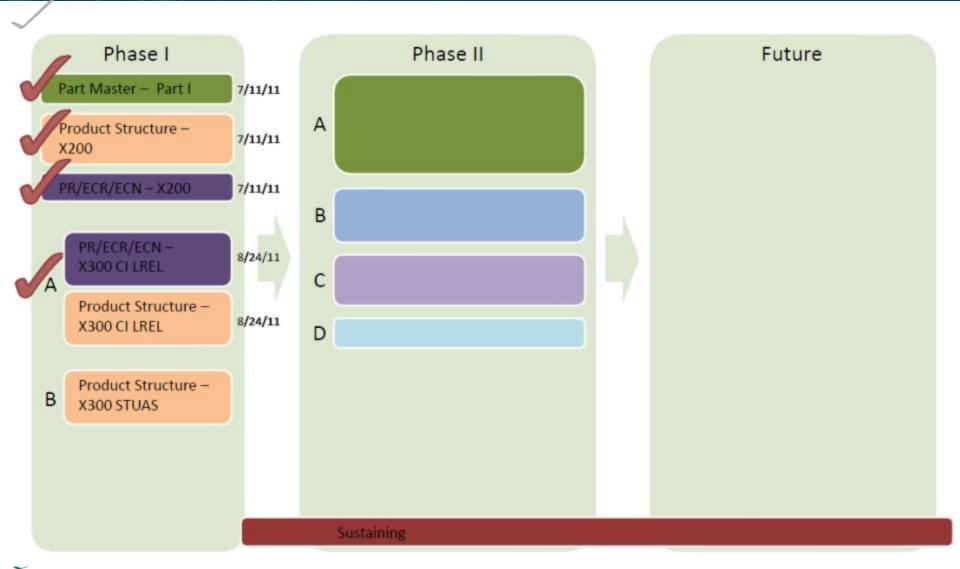
Key Elements of Success

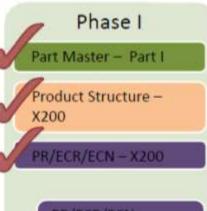
- Executive support from the top
- Project sponsor
 - Set schedule and committed to it
 - Provided business resources
- Project team
 - Business reps: CMII certified, committed to the project, willing to adopt the solution mainly out-of-the-box
 - Solution reps: Trained in Aras Innovator, knowledgeable on Engineering and CM processes (some CMII certified), Aras developer
 - Daily morning meetings
- Formal training provided to the user base, both on the new process and the new platform
- Aras Innovator is easily configurable, easily customizable, and very intuitive

The Goal & The Challenge

- Did we reach The Goal?
 - Speed up the release process
 - Yes! Less time in corrective action = faster release
 - Provide for formal change control earlier in the design process
 - Yes! Release at point of purchase, not production introduction

- Did we meet The Challenge?
 - Implement in 60 days
 - Yes! 4/11/11 6/6/11 = 56 days


(including data cleansing, formatting, migration and validation)


To Infinity and Beyond!

Accomplishments

Current Activity – Phase II

PR/ECR/ECN -X300 CI LREL

Product Structure – X300 CI LREL

B Product Structure – X300 STUAS

Phase II

Part Master – Part II –
Aras-Costpoint Integration
Visual ERP Retirement
Part Number Request

B CAD Master – Part I – Aras-Solidworks Integration

C Document Mgmt –
FPS/DSS/FAIR/WI/PAL

CAPA System

A

Potential Pop-Ups during Phase II: Risk Management Product Options & Variants

Sustaining

Future

Future Phases

Part Master - Part I

Product Structure – X200

PR/ECR/ECN - X200

PR/ECR/ECN -X300 CI LREL

Product Structure – X300 CI LREL

Product Structure – X300 STUAS

Phase II

Part Master – Part II –
Aras-Costpoint Integration
Visual ERP Retirement
Part Number Request

- B CAD Master Part I Aras-Solidworks Integration
- C Document Mgmt FPS/DSS/FAIR/WI/PAL
- D CAPA System

Potential Pop-Ups during Phase II: Risk Management Product Options & Variants

Future

CAD Master - Part II -CAD Document Management

CAD Master – Part III – CAD Data Migration

Risk Management

Project/Portfolio Mgmt

Product Options & Variants

Customer/Supplier Access

Maint, Repair & Overhaul (MRO)

Requirements Management

Quality Systems

Records Management

SW/FW/PCB Configuration Mgmt

More ...

Sustaining

